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Abstract:  

The recent advances in vehicle industry and vehicle to-everything communications are creating a huge potential market of intelligent 

vehicle applications, and exploiting vehicle mobility is of great importance in this field. Hence, this paper proposes a novel vehicle 

mobility prediction algorithm to support intelligent vehicle applications. First, a theoretical analysis is given to quantitatively reveal 

the predictability of vehicle mobility. Based on the knowledge earned from theoretical analysis, a deep recurrent neural network 

(RNN)-based algorithm called Deep VM is proposed to predict vehicle mobility in a future period of several or tens of minutes. 

Comprehensive evaluations have been carried out based on the real taxi mobility data in Tokyo, Japan. The results have not only 

proved the correctness of our theoretical analysis, but also validated that DeepVM can significantly improve the quality of vehicle 

mobility prediction compared with other state-of-art algorithms. 
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INTRODUCTION 

With the recent advance of automobile technologies, the motor vehicle has evolved from a simple mechanical device   to a smart 

platform incorporating various communication, computation and sensing functions. It is expected that future vehicles can provide 

not only pleasant and safe driving experiences, but also various kinds of services such as multi- media infotainment and social 

interactions. One of the most promising technologies to meet such expectations is vehicular networks that enable vehicles to 

efficiently exchange information through vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-pedestrian communications. 

The Third Generation Partnership Project (3GPP) group collectively defines these technologies as vehicle-to-everything (V2X) 

communications [1]. Gartner estimates that the annual production of network- connected vehicles will reach 61 million by 2020 

[2] and this leads to a great potential market of many intelligent vehicle applications like self-driving assistance, vehicle-based 

sensing data collection, traffic safety, geo-advertising, in-vehicle Inter- net access, and pothole detection [3–7]. 

The mobility of vehicles makes the topology of V2X networks highly dynamic, and this is one of the main challenges faced by 

V2X communications. Thus, exploiting vehi- cle mobility is of great importance in implementing intelligent vehicle applications. 

As an example, a number of smart city applications only require sensing data periodically and are delay-tolerant to data 

transmission, e.g., smart grid applications like advanced metering are tolerant to a data delay from tens of minutes to several hours 

[8], and an application that monitors the running statuses of street lights is tolerant to a delay of several hours or even longer [3]. 

Since it is quite expensive to deploy so many femtocells of cellular networks to transmit these sensing data generated by a large 

amount of geo-distributed IoT devices, many researchers suggest utilizing short-

rangeV2Xcommunicationtooffloadthesedelaytolerant data from cellular networks [3, 8–10]. Two representative short-

rangeV2XcommunicationstandardsareIEEE802.11p and LTE-V2X Mode 4 [12] that cover a communication range from several 

hundred meters to very few kilometers. Figure 1 illustrates an example of applying vehicle mobility prediction to support this 

application. Assume that taxis A a n d B are moving around a city and they opportunistically collect sensing data via short-range 
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communication when they encounter the sensors deployed in city (i.e., when vehicles enter the communication range of sensors). 

Both taxis want to deliver these sensing data to a road side unit (RSU) in the left of figure by short-range communication, and this 

RSU utilizes wired broadband networks to transmit sensing data back to adata center for further processing. When two taxis 

encounter each other, taxi A can intelligently forward its stored data to taxi B by short-range communication if taxi B is predicted 

to be moving towards the RSU. Consequently, when taxi B encounters the RSU later, the data from taxi A are successfully delivered 

even if taxi A never encounters that RSU directly. This kind of multi-hop data forwarding strategy powered by mobility prediction 

can significantly improve the quality of vehicle-based sensing data collection [9, 10]. Other intelligent vehicle applications that 

may benefit from mobility prediction include geo-advertising that utilizes vehicle mobility to broad- cast advertisement in a 

specific city region [7] and mobile edge computing that utilizes vehicle mobility to stimulate the 

computationalresourcesharinginV2Xnetworks [13]. However, since most vehicles move at their own wills, it would be difficult to 

obtain a perfect knowledge about their future mobility. To avoid this great uncertainty, existing works either make use of some 

metrics such as the encounter and inter-encounter time distributions to implement coarse- grained vehicle mobility predictions [10, 

13, 14], or simplify the problem to a Markov model that is not sufficient to make accurate prediction [9]. .  

 

Consequently, this paper proposes a deep recurrent neural network (RNN)-based algorithm called DeepVM to predict vehicle 

mobility accurately, and its main contributions are: 

(1) A solid theoretical analysis is presented to reveal the predictability of vehicle mobility quantitatively; 

(2) Based on the knowledge earned from theoretical analysis, a deep RNN-based algorithm called DeepVM is proposed to 

predict vehicle mobility. To the best of our knowledge, DeepVM is the first trial of deep learning technology in this field 

worldwide; 

(3) Extensive evaluation results based on real taxi move- mentshave not only validated the correctness of our theoretical 

analysis, but also shown that DeepVM significantly improves the quality of vehicle mobility prediction compared with the state-

of-art algorithms. 

A preliminary study of this work was presented in a conference paper [15]. Compared with its conference version, this paper 

supplements an entropy-based theoretical analysis to quantitatively evaluate the predictability of vehicle mobility and its 

correlation with vehicular trajectory knowledge. This analys is not only reveals the benefits of using deplearning for vehicle 

mobility prediction, but also explains the motivation of the proposed DeepVM algorithm. Furthermore, this paper sup- plements 

extensive evaluations to validate DeepVM from dif- ferent aspects. Instead of simply comparing the performances of DeepVM 

and other state-of-art algorithms, the evaluation results presented in this paper emphasize on clarifying the theoretical factors that 

contribute to the superior performance of DeepVM. Over 75% analysis and evaluation results of this paper are first presented. 

Finally, the introduction and related work parts of this paper are also improved to better illustrate the application scenarios and 

novel points of DeepVM. 

RELATEDWORK 

There are many existing works aim at predicting vehicle mobility in the background of selecting a stable wireless link for routing 

data in vehicle ad-hoc networks [16–18]. Agarwal et al. proposed a Dead Reckoning mechanism that uses the linear sum of a 

vehicle’s instant position and velocity to predict its near future positions [16]. Balico et al. adopted a shallow feed forward 

neuralnetwork with one hiddenlayer to predict vehicle mobility [17]. Their neural network accepts the instant position and velocity 

of a vehicle as input, and outputs its predicted next position with a time interval from 0.5 to 2 seconds. Evaluation results based on real 

vehicular trajectories have illustrated that this algorithm reduces mobility prediction error when compared with the Dead Reckoning 

and Kalman filter-based algorithms. Aljeri et al. described a prediction algorithm based on a Particle filter [18]. They modeled the 

mobility prediction problem as an iterative Particle filtering process on three parameters, i.e., the position, velocity, and acceleration of 

a vehicle. Their results  have  validated  that the Particle filter-based algorithm outperforms those based on Kalman and extended 

Kalman filters. However, since these works only aim at predicting vehicle  mobility  to  improve  the quality of ad-hoc data routing, 

they assume a vehicle’s kinetic parameters like velocity and acceleration are relatively constant during the concerned data transmission 
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period of a few seconds. Obviously, this assumption does not hold in the scenario with a longer prediction period like several or tens 

of minutes. Zhu et al. have proved that the uncertainty of future vehicle mobility can  be  reduced  by  giving  the  knowledge of previous 

vehicular trajectory, and used a 2-order Markov model-based algorithm to predict vehicle mobility accordingly [9]. However, there are 

two limitations in  their  work:  (1)  The theoretical analysis only concerns predicting a vehicle’s position in the next one time slot; and 

(2) Based on their incomplete theoretical analysis, a 2-order Markov model is claimed to be sufficient for predicting vehicle mobility. 

Our work in this paper not only extends the theoretical analysis in 

[9] to predict vehicle mobility in multiple future time slots, but also proposes a novel deep learning algorithm that outperforms Markov 

model-based algorithms significantly. 

Several existing works also introduce the intelligent vehicle applications that may benefit from an accurate prediction of vehicle 

mobility. Bonola et al. evaluated the performance of using 120 taxis to collect and disseminate sensing data in Rome, Italy [3]. They 

have shown that even a small fleet   of 120 taxis can disseminate sensing data to 80% areas of Rome in one  day.  However,  their  work  

does  not  exploit  the possibility of predicting vehicle mobility  to  accelerate this process. Lin et al. introduced a sensing data collection 

framework by using the short-range V2X communication in smart city [10]. Their algorithm extracts the regular routes    of vehicles 

from their daily mobility trajectories, and derives the encounter opportunities between different pairs of vehicles and RSUs accordingly. 

As a result, they let a vehicle with  less opportunities to encounter RSUs forward its sensing data to other vehicles that have more 

opportunities to encounter RSUs. This kind of multi-hop data forwarding strategy can not only improve the success ratio of data 

collection, but also reduce the delay of data collection significantly. Compared with our work that focuses on predicting  vehicle  

mobility, Lin et al. hypothesized that vehicle mobility is almost regular and their algorithm does not try to use any vehicle mobility 

prediction approach to estimate the encounter opportunities between vehicles and RSUs. Liu et al. proposed a  mobile edge computing 

architecture that can be applied to V2X networks [13]. In this architecture, a vehicle partitions itscomputational task into several 

subtasks and delegates them  to the service providers like RSUs and other vehicles that     are opportunistically encountered during 

movement. Service providers start to execute the received subtasks  by  using  their own computational  resources.  When  the  

execution  of a subtask is finished, the requesting vehicle downloads task results from the corresponding service provider when 

they encounter again. This architecture adopts some coarse-grained mobility statistics such as the encounter interval and duration 

between vehicles and service providers to accelerate task completion while ignoring the potential of trajectory-based 

mobilityprediction 

Finally, an increasing number of researchers are applying deep learning technology to explore the crowd and traffic flows in 

city [19–22]. Song et al. proposed a deep RNN architecture to jointly learn human mobility and transportation transition model 

from a heterogeneous data source of human movements and city transportation networks [19]. Their algorithm receives sequential 

input data of five time steps, and successfully explores the correlation between human mobility and their transportation modes to 

give accurate prediction. Compared with their work, our proposal presented in this paper aims    at predicting vehicle mobility from 

raw GPS data only, and adopts a different RNN architecture that receives a much longer sequence of input data to against the high 

uncertainty of vehicle mobility. Zhang et al. designed a novel architecture called DeepST to predict the crowd flow in city [20]. 

They modeled the in-flow and out-flow of the crowd in different city regions and used a sequence of convolutional neural networks 

to learn the spatial-temporal pattern soft these flows. A software tool was also developed for users to view the historical, real- time 

and forecasting crowd flows in city. Lv et al. studied predicting the macro-level traffic flow in city with a deep stacked autoencoder, 

and trained the network layer by layer greedily [21]. They have proved that the deep learning-based model is more accurate 

compared with other baseline models. Li et al. proposed a deep belief network to mine the hidden features of the traffic data in 

Macao, and combined the deep belief network with a support vector regression classifier to predict traffic congestion accordingly 

[22]. Different from the previous three works [20–22] that mainly focus on optimizing urban transportation system by using city-

wide traffic statistics to predict the macro-level flows of vehicles and crowd, our work in this paper aims at applying deep learning 

technology to predict the micro-level mobility of a vehicle by using its mobility trajectory directly. 

It can be concluded from the above discussion that none    of the existing works considers the possibility of using deep learning 

technology to predict vehicle emobility.Thus,ourwork presented in this paper validates the potential and superiority of this strategy 
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by providing both theoretical and empirical evidences. Compared with the existing works on predicting the macro-level statistics 

of vehicular traffic flow, our proposal is more helpful to the intelligent vehicle applications that are driven by the separate mobility 

of each vehicle and aim at utilizing the opportunistic communication window between nearby vehicles and other internet of things 

to provide novel services. 

 

                       Fig. 2: The snapshot of taxi mobility in one day. 

 

 

Propose Work 

Basic Idea 

Thus,ourwork presented in this paper validates the potential and superiority of this strategy by providing both theoretical and 

empirical evidences. Compared with the existing works on predicting the macro-level statistics of vehicular traffic flow, ourproposal 

is more helpful to the intelligent vehicle applications that are driven by the separate mobility of each vehicle and aim at utilizing the 

opportunistic communication window between nearby vehicles and other internet of things to provide novel services.  
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Figure1: Applying vehicle mobility prediction to assist the delay- to leran sensing data collection in smart city. 

 

Above Figure illustrates an example of applying vehicle mobility prediction to support this application. Assume that taxis A and B 

are moving around a city and they opportunistically collect sensing data via short-range communication when they encounter the 

sensors deployed in city (i.e., when vehicles enter the communication range of sensors). Both taxis want to deliver these sensing 

data to a road side unit (RSU) in the left of figure by short-range communication, and this RSU utilizes wired broadband networks 
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to transmit sensing data back to a data center for further processing. When two taxis encounter each other, taxi A can intelligently 

forward its stored data to taxi B by short-range communication if taxi B is predicted to be moving towards the RSU. Consequently, 

when taxi B encounters the RSU later, the data from taxi A are successfully delivered even if taxi A never encounters that RSU 

directly. This kind of multi-hop data forwarding strategy powered by mobility prediction can significantly improve the quality of 

vehicle-based sensing data collection. Other intelligent vehicle applications that may benefit from mobility prediction include geo-

advertising that utilizes vehicle mobility to broadcast advertisement in a specific city region and mobile edge computing that utilizes 

vehicle mobility to stimulate the computational resource sharing in V2X networks. However, since most vehicles move at their own 

wills, it would be difficult to obtain a perfect knowledge about their future mobility. To avoid this great uncertainty, existing works 

either make use of some metrics such as the encounter and inter-encounter time distributions to implement coarse-grained vehicle 

mobility predictions, or simplify the problem to a Markov model that is not sufficient to make accurate prediction.  

 

Figure 2: The neural network architecture of DeepVM algorithm unfolded in time 

 

This section describes the mechanism of our proposed DeepVM algorithm in detail. Briefly speaking, DeepVM adopts a deep RNN 

architecture and processes a 16-order vehicular trajectory to predict vehicle mobility. The choice of a 16-order trajectory is somewhat 

arbitrary, and it is determined to balance the trade-off between algorithm performance and our computational resources. As 

illustrated by the previous theoretical analysis, a longer trajectory may further improve the performance of DeepVM. Figure 4 shows 

the neural network architecture of DeepVM unfolded in time. DeepVM first encodes every grid identity to an ndimensional one-hot 

vector where n is the number of grids in city space, e.g., a grid identity of 2 is encoded to (0, 0, 1, 0 · · · 0). Every input data item of 

DeepVM contains a sequence of 16 grid identities that represent where a vehicle located in the past 16 time slots. The advantage of 

this one-hot vector representation is that it takes each grid identity equally regardless of the geographical location of grid. However, 

it also leads to a very sparse data item that delays the convergence of deep learning, e.g., there may exist thousands of ’0’s but only 

a ’1’ in a vector. Thus, DeepVM uses an embedding layer to transform a sparse grid identity vector into a smaller and-denser feature 

vector. As will be shown in Section VI, this embedding step helps to accelerate the convergence of DeepVM without much 

performance degradation, and it is a well-accepted feature extraction method in deep learning. The embedded vector of vehicular 

trajectory is fed into the RNN cells of DeepVM. Hoch Reiter et al. have proved that vanilla RNN cells cannot extract the long 

temporal dependency of input data due to the gradient vanishing and exploding problems, and Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) cells have been widely used to address these drawbacks. DeepVM adopts GRU cells based on the 

two observations in our preliminary experiments: (1) The performance discrepancies between two kinds of cells are usually less 

than 1%; and (2) GRU cells converge faster in training since they employ less parameters than LSTM cells. DeepVM integrates two 

GRU blocks, and each block is composed by two layers of GRU cells. When trained by the embedded vectors of vehicular trajectory, 
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these GRU blocks are able to learn and store the spatial-temporal correlations among the embedded vectors and use them to make 

predictions. A residual link is added to connect the input and output layers of each GRU block, and it helps to alleviate the issue of 

gradient vanishing in GRU blocks. 

Conclusion 

This paper proposes a deep learning-based vehicle mobility prediction algorithm called DeepVM to support intelligent vehicle 

applications. A theoretical analysis is first given to show that a long vehicular trajectory helps to reduce the uncertainty of future 

vehicle mobility. Based on the knowledge earned from theoretical analysis, DeepVM uses a deep recur- rent neural network to 

predict vehicle mobility. Comprehensive evaluations have proved that DeepVM can largely improve the quality of vehicle mobility 

prediction, and this superiority mainly comes from its ability to process a much longer vehicular trajectory than other state-of-art 

algorithms. 
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